

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 48

 Research Article ISSN: 2395 – 5597

NOVEL SCHEDULING ALGORITHMS FOR EFFICIENT DEPLOYMEN T OF MAP
REDUCE APPLICATIONS IN HETEROGENEOUS COMPUTING ENVI RONMENTS

J. Indumathi *1

1*Er. Perumal Manimekalai College of Engineering, Nallagana kothapalli, Near Koneripalli post, Hosur, Krishnagiri,

Tamil Nadu, India.

.

INTRODUCTION
The scale and maturity of the Internet has recently
increased dramatically, providing excellent
opportunities for enterprises to conduct business at a
global level with minimum investment. The Internet
enables enterprises to rapidly collect considerable
amounts of business data. Enterprises must be able to
process data promptly. Similar requirements can be
observed in scientific and Big Data applications.

ABSTRACT
Cloud computing has become increasingly popular model for delivering applications hosted in large data centers
as subscription oriented services. Hadoop is a popular system supporting the Map Reduce function, which plays a
crucial role in cloud computing. The resources required for executing jobs in a large data center vary according to
the job type. In Hadoop, jobs are scheduled by default on a first-come-first-served basis, which may unbalance
resource utilization. This paper proposes a job scheduler called the job allocation scheduler (JAS), designed to
balance resource utilization. For various job workloads, the JAS categorizes jobs and then assigns tasks to a CPU-
bound queue or an I/O-bound queue. However, the JAS exhibited a locality problem, which was addressed by
developing a modified JAS called the job allocation scheduler with locality (JASL). The JASL improved the use
of nodes and the performance of Hadoop in heterogeneous computing environments. Finally, two parameters were
added to the JASL to detect inaccurate slot settings and create a dynamic job allocation scheduler with locality
(DJASL). The DJASL exhibited superior performance than did the JAS, and data locality similar to that of the
JASL.

KEYWORDS
Hadoop, Heterogeneous environments, Heterogeneous workloads, Map Reduce and Scheduling.

Author for Correspondence:
Indumathi J,

Er. Perumal Manimekalai College of Engineering,

Nallaganakothapalli, Near Koneripalli post,

Hosur, Krishnagiri, Tamil Nadu, India.

Email: indu_jsk_1987@yahoo.co.in

International Journal of Engineering
and

Robot Technology

Journal home page: www.ijerobot.com

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 49

Therefore, promptly processing large data volumes
in parallel has become increasingly imperative.
Cloud computing has emerged as a new paradigm
that supports enterprises with low-cost computing
infrastructure on a pay-as-you-go basis. In cloud
computing, the Map Reduce framework designed for
parallelizing large data sets and splitting them into
thousands of processing nodes in a cluster is a
crucial concept. Hadoop which implements the
MapReduce programming framework, is an open-
source distributed system used by numerous
enterprises, including Yahoo and Facebook, for
processing large data sets. Hadoop is a server-client
architecture system that uses the master-and-slave
concept. The master node, called Job Tracker,
manages multiple slave nodes, called ask Trackers,
to process tasks assigned by the Job Tracker1.

MODULES

• Individual Performance of Each Workload.
• Performance analysis of the Job Allocation

Scheduler and Job Allocation Scheduler
Locality.

• Performance of the Dynamic Job Allocation
and Scheduler Locality.

Individual Performance of Each Workload
The individual performance of each jobs, and each
job setup comprised nearly 10 GB of data. The
average execution time of the DJASL was compared
with that of the default Hadoop algorithm in
Environment 1 the results revealed that the sorting
type jobs registered a higher execution time than the
other jobs did, and that the join type jobs exhibited a
shorter execution time. However, as shown in when
multiple data were batch processed, the execution
time did not increase multiples in continuation of the
experiment. For example, if we have double data
size of workloads, but the execution time will
increase less than two times.
Performance analysis of the Job Allocation
Scheduler and Job Allocation Scheduler Locality
In some of the ten requests, the performance of the
JAS algorithm was not superior to those of Hadoop
and DMR because the JAS algorithm sets slots
inappropriately. Therefore, the resource utilizations
of some Task Trackers became overloaded, and

some tasks could not be executed until resources
were released. Hence, the execution times of these
tasks increased, causing the performance of the JAS
algorithm to decrease compared with those of
Hadoop and DMR.
Performance of the Dynamic Job Allocation and
Scheduler Locality
The Job Tracker occasionally inaccurately sets the
slots when the JASL algorithm is applied, potentially
reducing the performance. Hence, the DJASL
algorithm includes two parameters, namely CPU
count and IO count, which are used to ensure
accurate slot settings. The Job Tracker resets slots
according to threshold values, and differences in the
threshold values cause performance results to vary.
If a threshold value is too high (i.e., slots are set
incorrectly when the DJASL is applied), the Job
Tracker must wait for a long period to reset the slots.
By contrast, if a threshold value is too low, the Job
Tracker must reset slots frequently2.

SYSTEM DESIGN3-6
Hadoop Default Scheduler
Hadoop supports the Map Reduce programming
model originally proposed by Google [9], and it is a
convenient approach for developing applications
(e.g., parallel computation, job distribution, and fault
tolerance). Map Reduce comprises two phases. The
first phase is the map phase, which is based on a
divide-and-conquer strategy. In the divide step, input
data are split into several data
blocks, the size of which can be set by the user, and
are then paralleled by a map task. The second phase
is the reduce phase. A map task is executed to
generate output data as intermediate data after the
map phase is complete, and these intermediate data
are then received and the final result is produced. By
default, Hadoop executes scheduling tasks on an
FCFS basis, and its execution consists of the
following steps:
Step 1
Job submission
When a client submits a Map Reduce job to a Job
Tracker, the Job Tracker adds the job to the Job
Queue.

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 50

Step 2
Job initialization
The Job Tracker initializes the job in the Job Queue
by the Job Tracker by splitting it into numerous
tasks; the Job Tracker then records the data locations
of the tasks.
Step 3
Task assignment
When a Task Tracker periodically (every 3 seconds
by default) sends a Heartbeat to a Job Tracker, the
Job Tracker obtains information on the current state
of the Task Tracker to determine whether it has
available slots.
Job Workloads
Proposed that jobs can be classified according to the
resources used; some jobs require substantial amount
of computational resources, whereas other jobs
require numerous I/O resources. In this study, jobs
were classified into two categories according to their
corresponding workload:
1) CPU-bound jobs and 2) I/O-bound jobs.
Hadoop Problem
As mentioned, Hadoop executes job scheduling tasks
on an FCFS basis by default. However, this policy
can cause several problems, including imbalanced
resource allocation. Consider a situation involving
numerous submitted jobs that are split into numerous
tasks and assigned to Task Trackers. Executing some
of these tasks may require only CPU or I/O
resources.
Because the default job scheduler in Hadoop does
not balance resource utilization, some tasks in the
Task Tracker cannot be completed until resources
used to execute other tasks are released. Because
some tasks must wait for resources to be released,
the task execution time is prolonged, leading to poor
performance.
Dynamic Map-Reduce Scheduler
To address the imbalanced resource allocation
problem of the default scheduler in Hadoop, as
described in Section 2.3, proposed a balanced
resource utilization algorithm (DMR) for balancing
CPU- and I/O-bound jobs. They proposed a
classification-based triple-queue scheduler to
determine the category of one job and then
parallelize various job types and thus balance the

resources of Job Trackers by using CPU- and I/O-
bound queues.
It then assigns two CPU-bound job tasks, J1t1 and
J1t2, and two I/O-bound job tasks, J2t1 and J2t2, to
Task Tracker1.
Task Tracker3 can execute one CPU-bound job and
three I/O-bound jobs simultaneously (i.e., Task
Tracker3 has three CPU slots and one I/O slot).
Nevertheless, according to the DMR approach, each
Task Tracker has two CPU slots and two I/O slots
(implying a total of four slots). After receiving jobs
from clients, the Job Tracker assigns the tasks to a
Task Tracker. Each Task Tracker contains two CPU-
bound tasks and two I/O-bound tasks. Therefore,
Task Tracker1 has one I/O-bound task that must wait
for the I/O resources to be released, resulting in its
I/O capacity becoming overloaded. Task Tracker2
has one CPU slot that must wait for CPU resources
to be released; therefore, the CPU capacity of Task
Tracker2 becomes overloaded. Finally, Task
Tracker3 has one CPU slot that must wait for CPU
resources to be released; therefore, the CPU capacity
of Task Tracker3 becomes overloaded. Furthermore,
Task Tracker3 includes one idle I/O slot, indicating
that its I/O resources are not effectively used.
According to this example, the DMR may exhibit
poor performance in a heterogeneous environment
because of its inefficient resource utilization.
Therefore, resource allocation is a critical concern in
heterogeneous computing environments involving
varying job workloads.

RESULTS
The experimental results can be classified into three
themes presented in three sections: 1) Section 4.2.1
presents the individual performance of each job and
indicates the effect of various data sizes; (2) Section
4.2.2 shows that the JAS algorithm improves the
overall performance of the Hadoop system and that
the JASL algorithm improves the data locality of the
JAS; and 3) Section 4.2.3 indicates that the proposed
DJASL algorithm improves the overall performance
of the Hadoop system and that this algorithm has
similar data locality to the JASL algorithm.

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 51

Individual Performance of Each Workloads
Illustrates the individual performance of each jobs,
and each job setup comprised nearly 10 GB of data.
The average execution time of the DJASL was
compared with that of the default Hadoop algorithm
in Environment 1 the results revealed that the sorting
type jobs registered a higher execution time than the
other jobs did, and that the join type jobs exhibited a
shorter execution time. However, as shown in when
multiple data were batch processed, the execution
time did not increase multiples in continuation of the
experiment. For example, if we have double data
size of workloads, but the execution time will
increase less than two times. We allocated nearly
100 GB of data storage space for each request
involving different jobs and processed them in
batches. The following sections present the
experimental results.
Performance and Data Locality of the JAS and
JASL Algorithms
In some of the ten requests, the performance of the
JAS algorithm was not superior to those of Hadoop
and DMR because the JAS algorithm sets slots
inappropriately. Therefore, ``the resource
Utilizations of some Task Trackers became
overloaded, and some tasks could not be executed
until resources were released. Hence, the execution
times of these tasks increased, causing the
performance of the JAS algorithm to decrease
compared with those of Hadoop and DMR.
However, to simulate real situations, the average
execution times of all jobs over ten requests were
derived. In the heterogeneous computing
environment, average execution times of the JAS
and JASL algorithms were shorter than those of
Hadoop and DMR. Depicts the average execution
times of Hadoop, DMR, and the JAS and JASL
algorithms. Because a substantial difference was
observed in the CPU and memory resources between
the nodes in those Environments (Tables No. 1-3),
the performance of the algorithms in Environment 2
was superior to that of the algorithms in the other
environments. However, the difference in
performance between the environments was small.
The execution time of the JASL algorithm was
longer than that of the JAS algorithm, but the data

locality of the JASL algorithm was substantially
greater than that of the JAS algorithm (Figure No.6).
Thus, the large amount of extraneous network
transformation produced by the JAS algorithm can
be reduced. Because of the large processing
capability difference between the nodes in
Environment 2, higher numbers of efficient nodes
were assigned for higher numbers of tasks, reducing
data locality. Illustrates the percentage execution
time relative to Hadoop. In the four environments,
the performance of the JAS algorithm improved by
nearly 15%-18% compared with Hadoop and nearly
18%-20% compared with DMR. Moreover, the data
locality of the JASL algorithm improved by nearly
25%-30% compared with the JAS in these
environments.
Performance and Data Locality of the DJASL
Algorithm
The Job Tracker occasionally inaccurately sets the
slots when the JASL algorithm is applied, potentially
reducing the performance. Hence, the DJASL
algorithm includes two parameters, namely CPU
count and IO count, which are used to ensure
accurate slot settings. The Job Tracker resets slots
according to threshold values, and differences in the
threshold values cause performance results
to vary. If a threshold value is too high (i.e., slots are
set incorrectly when the DJASL is applied), the Job
Tracker must wait for a long period to reset the slots.
By contrast, if a threshold value is too low, the Job
Tracker must reset slots frequently. Inappropriate
threshold settings hinder the maximization of
resource utilization and negatively affect te
performance of the Hadoop system.
Therefore, an experiment was conducted in this
study to determine the values of various threshold
settings.
The threshold was set to 100, 200, 300, 400, and
500. According to these five values, five requests
were sent to Hadoop, and each request contained ten
disordered jobs (five Word count and five Tera sort).
According to Figure No.7, setting the threshold value
to 300 yielded the optimal performance.
Because the DJASL algorithm can reset slots
through a count mechanism, its performance was
superior to that of Hadoop. On average, the

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 52

performance of the DJASL algorithm was superior to
that of DMR. However, the performance of the
DJASL algorithm was occasionally inferior to that of
DMR because slots must be reset. In some scenarios,
tasks executed by Task Trackers are not removed by
the Job Tracker. Therefore, the Job Tracker must
wait for such tasks to be completed.
When Task Trackers become overloaded, the
contained tasks cannot be completed until resources
are released. Therefore, the execution times for these
tasks are prolonged, reducing the performance of the
DJASL algorithm compared with that of DMR.
When the slots of the Job Tracker have been reset,
the resources of each Task Tracker can be used to
improve the performance of the Hadoop system. The
average execution time of all jobs was used to
simulate real situations.
We implemented three heterogeneous computing
environments (Tables No.1-3) and compared each of
them in detail with all the presented algorithms (e.g.,
Hadoop, DMR, JAS, JASL, DJASL). Figure No.8
(a) shows a comparison of the performance of the
DJASL algorithm in Environment 2, which
comprised a higher number of CPUs in slave
computers compared with the master computers, and
Environment 1. Figure No.8 (b) depicts a

comparison of the performance of the DJASL
algorithm in Environment 3 in which more memory
was allocated to the slave computers compared with
the master computers, and Environment 1. Figure
No.8 (c) depicts a comparison of the performance of
the DJASL algorithm in Environment 4, in which a
higher number of CPUs and memory was allocated
to the master node compared with the slave node,
and Environment 1. A comparison of the results in
Figure No.8 revealed that the numbers of CPUs
demonstrated a considerably greater effect on
performance regarding the amount of memory
resources and improved processing capability of the
master node. As shown in Figure No.8, the
performance of the DJASL algorithm improved by
approximately 27%-32% compared with DMR and
by approximately 16%-21% compared with Hadoop.
The four heterogeneous computing environments
were compared, and illustrates the results. The data
locality of the DJASL algorithm was nearly identical
to that of the JASL algorithm. In these environments,
the JASL and DJASL effectively improved the data
locality and also reduced the differences between
these algorithms and Hadoop.

Table No.1: Heterogeneous CPU experimental environment

S.No
Master Slave

Quantity Specification Quantity Specification

1 Environment1 1 2cpu and 4GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory

2 Environment 2 1 2cpu and 4GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory

Table No 2: Heterogeneous RAM experimental environment

S.No
Master Slave

Quantity Specification Quantity Specification

1 Environment1 1 2cpu and 4GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory

2 Environment 3 1 2cpu and 4GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 53

Table No 3: Heterogeneous Master experimental environment

S.No
Master Slave

Quantity Specification Quantity Specification

1 Environment1 1 2cpu and 4GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory

2 Environment 4 1 4cpu and 8GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory
33 1 cpu and 2GB memory

Figure No.1: Imbalanced resource allocation

(a) When a client submits a new job, the submitted job is added to the waiting queue. Subsequently,

the scheduler classifies the job type

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 54

(b) After the scheduler classifies the job type, the jobs are added to the CPU-bound queue or the I/O-

bound queue. The Job Tracker then assigns these tasks ac-cording to the number of free CPU or I/O slots
con-tained in the Job Tracker

(c) The Job Tracker assigns tasks until all of the Task- Trackers have no free slots

Figure No.2: Workflow of a DMR scheduler

Figure No.3: Average execution time of each job in the Hadoop system and DJASL algorithm

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 55

Figure No.4: Average execution time of each job for various data sizes

Figure No.5: Performance of JAS and JASL compared with Hadoop and DMR in four computing

environments

Figure No.6: Data locality of JAS and JASL compared with Hadoop in four environments

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 56

Figure No.7: Average execution time of a job in DJASL for setting the various thresholds

Figure No.8: Performance of the DJASL compared with the JAS and JASL in different heterogeneous

computing environments

CONCLUSION
This paper proposes job scheduling algorithms to
provide highly efficient job schedulers for the
Hadoop system. Job types are not evaluated in the
default job scheduling policy of Hadoop, causing
some Task Trackers to become overloaded.
According to the proposed DJASL algorithm, the
Job Tracker first computes the capability of each
Task Tracker and then sets the numbers of CPU and
I/O slots accordingly. In addition, the DJASL
algorithm substantially improves the data locality of
the JAS algorithm and resource utilization of each
Task Tracker, improving the performance of the

Hadoop system. The experimental results revealed
that performance of the DJASL algorithm improved
by approximately 18% compared with Hadoop and
by approximately 28% compared with DMR. The
DJASL also improved the data locality of the JAS by
approximately 27%. The proposed scheduling
algorithms for heterogeneous cloud computing
environments are independent of systems supporting
the Map Reduce programming model. Therefore,
they are not only useful for Hadoop as demonstrated
in this paper, but also applicable to other cloud
software systems such as YARN and Aneka.

Indumathi J. / International Journal of Engineering and Robot Technology. 3(2), 2016, 48 - 57.

Available online: www.uptodateresearchpublication.com July - December 57

ACKNOWLEDGMENT
This research was partly supported financially by the
Headquarters of University Advancement at National
Cheng Kung University, which is sponsored by the
Ministry of Education, Taiwan, R.O.C.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

BIBLIOGRAPHY

1. Apache Hadoop. http://hadoop.apache.org/
2. Apache Hadoop YARN.

http://hadoop.apache.org/docs/current/hadoo
p-yarn/hadoop-yarn-site/YARN.html.

3. Hadoop’s Capacity Scheduler.
http://hadoop.apache.org/core/docs/current/ca
pacity scheduler.html.

4. Matei Zaharia. “The Hadoop Fair
Scheduler”http://developer.yahoo.net/blogs/h
adoop/FairSharePres.ppt.

5. Ahmad F, Chakradhar S T, Raghunathan A
and Vijaykumar T N. “Tarazu: optimizing
mapreduce on heterogeneous clusters,” In
ACM SIGARCH Computer Architecture
News, 40(1), 2012, 61-74.

6. Atallah M J, Lock C, Marinescu D C, Siegel
H J and Casavant T L. “Co-scheduling
compute-intensive tasks on a network of
workstations: model and algorithms,” In
Proceedings of the 11th International
Conference on Distributed Computing
Systems, 11th, 1991, 344-352.

Please cite this article in press as: Indumathi J. Novel scheduling algorithms for efficient deployment of map reduce
applications in heterogeneous computing environments, International Journal of Engineering and Robot Technology,
3(2), 2016, 48 - 57.

